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Abstract

Intersonic crack growth has been studied using an interfacial fracture model in which an additional material phase

within a bonding layer is proposed to describe the failure behavior of the interface. In this material phase, a strain

gradient based damage model is applied with a built-in cohesive law, which is governed by an material intrinsic length

scale that bridges the mechanisms that operate at continuum mechanics scale and at smaller scales. Simulations of the

intersonic crack growth experiments (Rosakis et al., 1999; Rosakis, 2002) have been performed with varying material

length scales and other parameters. The study is focused on two subjects: (1) the process of decohesion-induced

cracking, explaining fracture process zone initiation and propagation as well as the corresponding contact mechanisms;

(2) propagation speed, investigating the effects of length scales and loading parameters.

The simulations reveal that a fracture process zone initiates first and extends with a speed faster than shear wave

speed. After initiation, the crack speed exhibits oscillations with an average value between cs
ffiffiffi
2

p
and cl, where cs and cl

refer to shear wave and dilatation wave speeds, respectively. In such a quasi-steady-state propagation, the crack

opening profiles exhibit a time-invariant profile, while the fracture process zone size and decohesion energy remain

constant. Contact between the crack faces is taken into account in the numerical simulations. A contact zone behind the

crack tip has been captured which represents a self-healing-like mechanism. The leading edge of both the fracture

process zone and the contact zone may cause strong shocks. When the average crack propagation speed approaches the

supersonic region, two stress shocks radiate from the crack tip, corresponding to shear and dilatation wave radiation,

respectively. The simulation results demonstrate that length and time scales play vital roles during crack propagation.

Here the length scales refer to the bonding layer thickness and the material�s intrinsic length that governs energy

dissipation during failure; whereas the time scales refer to the effects of material strain rate dependence, material failure

speed, and wave propagation properties. A parameter Rs, expressed as the ratio of material shear strength and the

applied stress that is calculated from the remote imposed displacement boundary condition, is proposed to scale crack

speed. Intersonic propagation occurs when Rs is greater than a threshold value. The numerical computations are

compared with experiments (Rosakis et al., 1999; Rosakis, 2002) and the theoretical solution [Philos. Mag., A, in press],

which demonstrates the trend that crack propagation is unstable in the open speed interval between cs and jvcs
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6 jv < cl=cs) whereas it is stable when the speed lies in the close interval between jvcs and cl. The coefficient jv is a

function of material length scale, strain rate sensitivity, and boundary conditions. The moving particle finite ele-

ment method, a newly developed meshfree method, and the pinball contact algorithm are applied in the numerical

analysis.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The issues of the limiting speed of dynamic crack growth and the stress and strain fields surrounding a

crack tip moving faster than the characteristic wave speeds have recently received a lot of attention

(Rosakis et al., 1999; Rosakis, 2002). Washabaugh and Knauss (1994) find that the velocity of a mode I

crack tip propagating along a fabricated weak plane may asymptotically approach the Rayleigh wave

speed. The tests of mode II crack propagation along a weak plane conducted by Rosakis and his co-authors

(Rosakis et al., 1999, 2000) reveal that given sufficient driving force, the crack propagation speed can jump

to the intersonic speed regime, speeds lying between cs and cl, the shear and dilatational wave speeds,
respectively.

The theoretical linear elastic dynamic crack growth analyses, as elegantly summarized by Freund (1990)

and Broberg (1999a,b), indicate that the order of the stress singularity at such a crack tip and the corre-

sponding energy release rate depends upon its propagation speed. For mode I crack growth in isotropic

solids, the physically admissible stress singularity and the energy release rate vanish when the propagation

velocity exceeds the Rayleigh wave speed. Whereas for mode II intersonic crack growth, the crack tip

singularity is less than 1/2 which leads to a positive crack tip energy release rate. In this case, both the crack

tip asymptotic solution (Freund, 1979) and dislocation analysis (Weertman, 1969; Weertman and Weert-
man, 1980) indicate that such a crack propagation is accompanied with stress radiation that has the same

order as the crack tip stress except at the Eshelby speed, i.e. at cs
ffiffiffi
2

p
where the corresponding crack tip

singularity is 1/2. Griffith�s Theory requires a crack tip stress singularity with a power of half. Thus, the-

oretically the Eshelby speed is the only admissible speed for steady-state mode II crack propagation above

the shear wave speed.

On the other hand, both the analysis of seismic data (Bouchon et al., 2001) and experimental

observations (Rosakis et al., 1999) demonstrate that a shear fracture on a pre-existing fault or a weak-

path crack growth under mode II dynamic load can propagate in a wide range of speeds above the shear
wave speed. A unified explanation is that the material decohesion in the weak path, rather than stress

singularity, dominates the propagation under this situation, which actually smears out the stress con-

centration at the crack tip and thus removes the radiated stress singularity at shock front (Burridge et al.,

1979; Broberg, 1999a,b; Needleman and Rosakis, 1999). From this view, several challenging issues are

raised:

1. How does a crack initiate and grow from a static state to intersonic speeds?

2. When the Eschelby speed is no longer the uniquely admissible intersonic speed, which factors determine
crack propagation speeds?

3. How does the material viscosity (strain rate sensitivity-drag effect) affect propagation?

4. What is the role of crack surface contact during decohesion and intersonic crack growth?

5. What are the effects of material intrinsic and extrinsic lengths on this class of problems?
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Motivated by the Rosakis� experiment and seismological observations, a comprehensive numerical study

focusing on the issues mentioned above is performed. As compared with previous research reports, the

distinguishing points and contributions of the present work are as follows:

1. A three-phase model is proposed to simulate interface fracture, in which an additional interface material

phase is introduced between two solid matrices in a bi-material system. The bonding strength and related

mechanical properties are define by the constitutive law of this interfacial material phase.

2. The effects of length scales and strain rate have been investigated for the laboratory scale dynamic test.

The length scales refer to the material intrinsic length presented in a strain gradient theory-based con-

stitutive law whereas the extrinsic length refers to the bonding layer thickness that contains the interfa-

cial phase.

3. In order to obtain the detailed information of intersonic crack propagation, the mode I and II crack
opening displacements, the decohesion energy and fracture toughness are simulated and studied.

4. In conjunction with a multi-scale constitutive model (Hao et al., 2000c; Hao et al., in press), the moving

particle finite element (Hao et al., 2002; Hao et al., in press), a newly developed numerical method, is

applied in the simulations. Using this method we are able to

• implement the contact mechanism into the numerical simulation. Several contact-related phenomena,

such as self-healing, have been captured.

• investigate some parameters and conditions that affect propagation speed which are currently difficult

to simulate by other methods.
• capture both intersonic and supersonic shocks, either in the stress or strain fields.

5. Both crack acceleration and deceleration have been studied. It has been found that the intersonic crack

tip field radiates out from the site where a crack started to decelerate.

6. The numerical simulations are generally in agreement with the experimental observations (Rosakis et al.,

1999; Rosakis, 2002) and theoretical predictions (Hao et al., in press) that intersonic crack propagation is

unstable in the open speed interval between cs and jvcs whereas it is stable when the speed lies in the close

interval between jvcs and cl. The parameter jv is a function of material intrinsic and extrinsic lengths,

strain rate hardening parameters, and boundary conditions.

A considerable number of reports regarding intersonic and supersonic crack propagation can be found in

the past three decades, including Andrews (1976), Burridge et al. (1979), Weertman and Weertman (1980),

Piva and Hasan (1996), Huang et al. (1998), Gumbsch and Gao (1999), Huang et al. (1999), Needleman

(1999), Needleman and Rosakis (1999), Ben-Zion (2001), Dwivedi and Espinosa (submitted for publication),

Federici et al. (2001), Geubelle and Kubair (2001), Samudrala et al. (2002), Guo et al. (2003) and Samudrala

and Rosakis (2003). Reviews of dynamic fracture in seismic studies are presented by Dmowska and Rice

(1986) and Freund (1990), and recently by Rosakis (2002). With respect to numerical analysis, Andrews
(1976) first simulated intersonic shear failure using a finite difference technique. Applying cohesive finite

elements, Needleman and Rosakis (1999) study the effects of loading rate and strength of the weak path.

Gumbsch and Gao (1999) simulate intersonic crack growth using molecular dynamics. Molecular dynamics

simulations of supersonic crack propagation were conducted recently by Gao et al. (2001). The effects of

strain rate sensitivity (drag) and strain gradient on single dislocation motion with speeds in subsonic,

intersonic, and supersonic regions has been analyzed by Rosakis (2001). As an complement to this paper, a

theoretical analysis of steady-state intersonic crack growth has been conducted in Hao et al. (in press) based

on the moving dislocation solution introduced in Weertman and Weertman (1980).
This paper is organized as follows: Section 2 gives the problem statement, a brief introduction of the

multi-scale damage constitutive law that is applied in the numerical simulation, and the proposed interface

fracture model. The corresponding numerical scheme is illustrated in Section 3. The simulation results and

discussions are presented in Section 4. Section 5 summarizes conclusions.
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In the analysis that follows, boldface letters are used to represent tensors. Plan letters represents scalars.

Plain letters with subscripts represent the components of a tensor, where the Einstein summation con-

vention is applied to repeated subscripts.
2. Problem statement, interfacial fracture model, and constitutive law

2.1. Problem statement and experimental configuration

Caltech�s mode II dynamic shear rupture specimen (Rosakis et al., 1999) is shown in Fig. 1. It is

composed of two pieces of Homalite-100 (a photoelastic polymer) bonded along a horizontal interface. The

bonding is produced by using the monomer of the photoelastic polymer and by polymerizing in situ using a

catalyst. The resulting adhesive material has elastic properties that are very close to those of the two
monolithic pieces and variable strength depending on the curing time. Its strength is in general lower than

the monolithic Homalite, a condition necessary to trap the resulting shear crack and to force it to propagate

along the weak bond without kinking into the Homalite pieces. Its height, h, is of the order of 100 lm. A

notch is machined along the bond line. Asymmetric dynamic loading is provided by firing a steel projectile

onto the upper half of the specimen just above the pre-notch. The impact velocities range from 20 to 35 m/s.

The impacting projectile loads the notch in shear (a small component of compression is also present) and

produces a concentration of shear stresses along the weak bond. As the shear stresses and strain rates

increase at the notch tip, a dynamically growing shear rupture is produced and grows along the bond with
intersonic speeds (Rosakis et al., 1999). The rupture process is visualized by means of high speed photo-

graphy (2 million frames/s) and the optical method of photoelasticity. Photoelasticity, which is sensitive to
Fig. 1. Caltech mode II dynamic fracture test.
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maximum shear stresses, is the ideal technique to be used in visualizing shear dominated fracture events.

Indeed, the intersonic shear ruptures reported by Rosakis et al. (1999) are seen to feature two very well

resolved shear shock waves (discontinuities in shear stress) that are attached to the intersonically moving

shear crack tip, clearly revealing the intersonic nature of the dynamic shear rupture processes.

2.2. Three-phase interfacial fracture model

For the specimen shown in Fig. 1, the upper and lower solid domains are made of Homalite-100

(Rosakis et al., 1999). Instead of ideal bonding, we assume that a thin material layer with a height h exists

between the two pieces. The bonding and decohesion properties are defined by the constitutive law that

governs this third material, which will be described in the next subsection. Hence, interfacial debonding of
the specimen shown in Fig. 1 is modeled as the fracture problem involving the sandwich structure shown in

Fig. 2 with an additional length scale h, which is considered as a material ‘‘extrinsic length’’ for this model.

In reality, such bi-material interfacial transition zones always exist at micro-scale due to the diffusions.

According to experimental result, in the present analysis, the h is taken from 1 to 200 lm and its effect on

intersonic crack growth has been studied. For the specimen shown in Fig. 1, it has been reported that h is

about 20 lm (Rosakis et al., 1999; Rosakis, 2002).

2.3. Constitutive equation and length scale dependent cohesive law

In the present analysis, the bulk Homalite-100 is assumed to be isotropic and linearly elastic. The

bonding layer phase is modeled by the multi-scale damage constitutive model introduced in Hao et al.

(2000c) and Hao et al. (in press) that is described briefly as follows.

Assuming finite deformations but infinitesimal elastic strain, we apply the additive decomposition of the

strain rate tensor
_e ¼ _ee þ _ep ð1Þ

where _ee, the elastic part of strain rate, obeys the same linear elastic constitutive law as the bulk Homalite-

100. The plastic part of strain rate, _ep, is described by the plastic potential:
Fig. 2. A three-phase model for intersonic interfacial shear fracture.
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_epp ¼ _k
oUmulti
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where _k is the ‘‘flow factor’’, r and rm denote the Cauchy equivalent stress and Cauchy mean stress,

respectively; f represents the void volume friction which is considered as a damage. The parameters A0, A1,
A2, g1, g2, and q are dimensionless material constants as listed in Table 1. The evolution laws of damage

nucleation and growth introduced in Tvergaard and Needleman (1992) are applied in the present work. In

Hao et al. (in press) a hierarchical constitutive model is developed that unions quantum physics with the

sub-micro and micro-cell models in continuum mechanics. The relation (2) is derived based on the macro-

scale potential obtained from micro-cell model.

The plastic potential (2) is associated with the multi-scale damage model in which the mechanisms from

two scales are taken into account. At macro-scale up to the point of bifurcation, the J2-like plasticity and

damage in the form of void nucleation and growth are taken as the dominant mechanisms of failure, which
is a combination of J2-plasticity, the Rice–Tracey model (Rice and Tracey, 1969), and Coulomb friction. A

computational methodology to calibrate the constants is introduced in Hao et al. (2000a). The collapse of

the ligaments between voids or between other defects is considered as the mechanism after the onset of

bifurcation, which highlights the underlying mechanisms at smaller scales which become dominant through

global material failure. At this stage the matrix material is modeled by a set of material particles connected

by a network of ‘‘virtual internal bonds’’ where each bond obeys the strain gradient-based localization

solution that defines a traction-separation law [25]. The development of the micro-ligament collapse model,

which is absent in the conventional Gurson�s model, is based on the idea that combines the computational
cell model, the concurrent two-scale simulation (Hao et al., 2000b), and the ‘‘virtual internal bond model’’

of cohesive material structure (Klein and Gao, 1998). For the isotropic case, the average stress–strain re-

sponse of this model is described by rintr at macro-scale, which is named as ‘‘material intrinsic strength’’ in

(2). It is defined as the combination of material strain hardening/softening law and the strain gradient-based

traction-separation law:
rintr ¼ r strain hardening=softening; �ep 6 ½�e�bifurc

T ðeY ; l; gÞ decohesion softening; �ep > ½�e�bifurc

(
ð4Þ
where the �ep is the plastic part of equivalent strain and ½�e�bifurc denotes the �ep at the bifurcation point the on

rintrð�epÞ relation. l is the material intrinsic length scale defined as the product of Burger�s vector b and the

initial yield strength rY 0. g is the equivalent strain gradient (Gao et al., 1999):
l ¼ 3
E
rY 0

� �2

b; g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
uk;ijuk;ij

r

1

efficients in (2)

A1 A2 g1 g2 q

66 0 1.7 0 0 0.45



Fig. 3. The built-in cohesive law and the definition of material intrinsic strength.
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and the strain-like parameter eY is defined by
eY ¼ ð�ep � ½�e�bifurÞ l
l0

ð4aÞ
where l0 is a material constant. As illustrated in Fig. 3, ½�e�bifurc marks the transition between the two stages

of deformation, the uniform deformation with damage nucleation and growth and the failure of the liga-

ments between these defects. ½�e�bifurc can be calibrated to the maximum stress on the rintrð�epÞ curve from the

uniaxial tension test. During the second stage, the effect of the material intrinsic length scale, strain gra-

dient, and strain rate are incorporated in rintr (4) as
T ¼ rY 0 � eT ð�ep; l; l0Þ � 1

 
þ

_�e
_�e0

!m

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rhomð�epÞ

rY 0

" #2
þ lg

vuut ð5Þ
The second term in (5) is the traction-separation law derived from the strain gradient-based localization

solution at the micro-scale. The third and fourth terms reflect, in turn, the strain rate effect and the material

hardening due to the strain gradient at macro-scale. As the micro-scale localization, representing ligament

failure, is described by eT in (5), the stress–strain response without bifurcation, denoted by rhomð�epÞ, appears
under the square root of the fourth term.

Based on the analytical solution described in Hao et al. (2000b), eT can be approximated as
eT ¼ �0:5398Y 2 þ 1:5867Y � 0:0466

1� ktr
ð5aÞ
where
Y ¼ exp 106 � ðeY Þ115n o
; ktr ¼

rI � 3rm

2rI

���� ���� and ktr < 1
where rI is the maximum principle stress and ktr represents the triaxiality of the stress state. In the cases of

pure triaxial tension and compression (ktr ¼ 1), it is assumed that the fine scale mechanism is not activated

as no shear stress exists to trigger localization. As illustrated in Fig. 3, the primary effect of the material

intrinsic length l is a scaling of the energy dissipated during decohesion.

For the numerical simulations we employed a bilinear approximation to (5a) that incorporates the
essential characteristics in an expression with reduced complexity (see Fig. 4)



Fig. 4. The bilinear expression of the cohesive law and its variation with the material intrinsic length.
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eT0 ¼ 1� j0ð�ep � ½�e�bifurcÞ; �ep � ½�e�bifurc 6�e�

j1 � j2ð�ep � ½�e�bifurcÞ; �ep � ½�e�bifurc > �e�
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where
j0 ¼
1

p
; j1 ¼

1� �e�=p

1�
ffiffiffi
3

p
=2

; j2 ¼
1� �e�=p

�e�ð2=
ffiffiffi
3

p
� 1Þ

; �e� ¼ 0:041
l
l0
For a metal, it is suggested that l0 ¼ 100 lm (Hao et al., in preparation).
3. Numerical scheme

3.1. Discretization and model parameters

Three-dimensional meshfree simulations have been performed using the configuration shown in Fig. 5a.

The specimen is discretized into 2–5 layers in thickness direction. Each layer has about 11,000 nodes (total 5

layers) to 112,000 nodes (total 2 layers). The distribution of nodes in the vicinity of the notch tip is

illustrated in Fig. 5b.

The impact of the projectile is modeled by two methods: the projectile is assumed to be a rigid body

acting on the specimen; and the projectile is replaced by a prescribed velocity boundary condition. No

significant differences are observed between the two approaches. The contact algorithm used with the rigid

projectile requires additional computational effort. The fixed velocity boundary condition is imposed on the
specimen edge along a height equal to the diameter of the projectile. The imposed velocity varies in time as

described by Needleman (1999) and Needleman and Rosakis (1999):
V pðtÞ ¼

Vpt=ti; 0 < t < ti
Vp; ti 6 t6 tp
Vp½1� ðt � tpÞ=ts�; tp 6 t6 tp þ ts
0; tp þ ts 6 t

8>><>>: ð6Þ
where Vp is the velocity of the projectile. In the present computation, ti and ts are chosen to be zero while tp
is equal to twice the time that a dilatational wave takes to travel the length of the projectile.



Fig. 5. Particles modeling of the three-phase model introduced in Fig. 2 (the A–A0 image will be removed).

Table 2

Parameters applied in numerical simulations

l (mm) material

intrinsic length

h (mm) bonding

layer thickness

rY 0 (MPa)

bonding

strength

m strain rate

hardening

exponent

Vp (m/s) impact

velocity

Wp (mm) dis-

tance from the

projectile to the

notch

Fr friction coeffi-

cient (outside

fracture process

zone)

0.02, 0.04, 0.07,

0.10, 0.20

0.01, 0.02, 0.05,

0.10, 0.16

27, 14, 7 0.01, 0.1 10, 20, 30, 40, 70 0.5, 2.5, 5.5, 9.5,

25

0, 1.0
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The numerical study was conducted by varying material intrinsic length, bonding layer thickness, strain

rate, bonding strength, loading condition, and impact velocities. The values of these parameters are listed

in Table 2.
3.2. Numerical schemes

The moving particle finite element method (MPFEM) (Hao et al., 2002; Hao and Liu, 2002; Hao et al.,

in press), a new numerical method based on conventional finite element method (Oden, 1972; Hughes, 1987;
Belytschko et al., 2000) and the meshfree methodologies introduced in Belytschko et al. (1994) and Liu

et al. (1995, 1996, 1997), has been applied in the numerical analysis. The idea of the method can be briefly

described using the boundary value problem illustrated in Fig. 6a. An interpolated solution of displacement

u in a finite element can be expressed as



Fig. 6. (a) A boundary value problem defined on �Xð¼ X [ oXÞ. (b) An approximated solution at x can be obtained from either element

E1 or E2. (c) MPFEM approximation––an average from the surrounding elements.
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uðxÞ ¼
XNE

I¼1

NE
I ðxÞ � uEI
where NE
1 ðxÞ is the interpolation function (shape function) for element E, uEI is the displacement u at node I

in element E, and NE denotes the total number of nodes in element E. The derivative of the field uðxÞ
at a point x (see Fig. 6b) can be obtained either through the interpolation of its left side element E1 or the

right side element E2:
duðxÞ
dx

����
E1

¼
XNE1

I¼1

dNE1
I ðxÞ
dx

uE1
I or

duðxÞ
dx

����
E2

¼
XNE2

I¼1

dNE2
I ðxÞ
dx

uE2
I

where NEi
1 ðxÞ is the shape function for element Ei, NE1 and NE2 represent the number of nodes in elements

E1 and E2, respectively. For regular finite element method, a gap exists between these two interpolations

though they approach a convergent solution when the finite elements become very small. This is because
derivatives in conventional finite element solutions are discontinuous at element edges. The concept of the

MPFEM can be interpreted as a weighted summation of the solution from all finite elements adjacent to x,
as illustrated in Fig. 6c:
duðxÞ
dx

¼
XNe

i¼1

-i

XNEi

I¼1

dNEi
I ðxÞ
dx

uEi
I

( )
ð6aÞ
where the weight -i is calculated by minimizing the interpolation error using a meshfree scheme, which

removes the numerical discontinuity at element edges. Therefore, the basic idea of MPFEM can be

interpreted as an interpolation of finite element interpolation, which combines salient features of finite
element and meshfree methods while alleviates certain problems that plague meshfree techniques. It dis-

plays considerable stability under large deformations and efficiency with acceptable accuracy, especially for

dynamic problems involving high speed impacts. A detailed description of MPFEM can be found in lite-

ratures, e.g. in Hao et al. (in press).

For the intersonic crack propagation, the numerical analysis is carried out using a Lagrangian, large

deformation Galerkin formulation (Belytschko et al., 2000). The pinball contact algorithm (Belytschko and

Neal, 1991) is applied in the simulation. The reviews of the recent developments of meshfree methods can

be found in Belytschko et al. (1996) and Babuska et al. (in press).



Fig. 7. Fracture process zone initiation and subsequent crack propagation. (a) t¼ 0.80e)5, (b) t¼ 1.12e)5, (c) t¼ 1.20e)5,
(d) t¼ 1.35e)5, (e) t¼ 1.45e)5 and (f) t¼ 1.70e)5.
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4. Results and discussion

4.1. Crack initiation––an observation

Fig. 7 presents a set of snapshots of the numerical simulation of the specimen shown in Fig. 2. The

contours of the stress r22, which is normal to the crack propagation path, are displayed in the vicinity of the

notch tip at different time steps. According to these figures, intersonic crack initiation may be divided into

four stages:

1. Initial wave propagation (Fig. 7a and b): the impact of the projectile induces a dilatational wave that
(dark blue color) sweeps transversely over the specimen with a distinct wave front. However, two kinds

of shear wave impulses could also exist behind the dilatation wave front but they are overshadowed in

these figures. They are the impact induced shear wave, which is behind the dilatation wave front with the

distance tðcl � csÞ where t is time, and the reflect shear wave when the dilatation wave impulse hits the

traction-free notch surface and bi-material interface.

2. After the dilation wave front has passed, a drop of r22 can be seen along the bonding layer ahead the

notch tip (Fig. 7b and c), marked as the line segment with light color emanated from the notch tip. This

drop is caused by the nucleation of a fracture process zone after the onset of material decohesion. Within
this zone, the softening of the interface material results in the localized fluctuation of stresses.
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3. Crack initiation (Fig. 7c and e): After a considerable fracture process zone formed, a significant stress

drop occurs in a relatively large area near the notch end, characterized by an increasing stress noise radi-

ation at both sides of the bonding layer, which can be interpreted as a crack initiation that creates nearly

traction-free new surfaces. It is well-known that a crack induced by mode II loading is always accompa-
nied by some mode I crack opening, which relaxes the impact induced compressive r22 and results in a

shock-like contour of stress noise (red color).

4. Acceleration and steady-state propagation (Fig. 7e and f): the angle between stress shock front and

bonding layer becomes smaller, implying that the crack growth is speeding up. In general this angle h
is related to the propagation speed v through the relation (Weertman and Weertman, 1980):
Fig. 8. A

(c) compa
h ¼ sin�1 cs
v

� �
ð7Þ
when vP cs.

Crack propagation can be considered as the accumulation of damage in the forms of micro-defects (such

as voids or micro-cracks) nucleation, growth, and coalescence. This process is characterized by the fast

softening stage defined in (4) and (5) of the constitutive model (see Figs. 3 and 4). When the dilatation wave

front hit the notch tip, the resulting shear stress causes the softening of the bonding layer material and
triggers spontaneous debonding along the weak path, which is reflected as the fracture process zone

emanating from the notch tip, as shown in Fig. 7.

Fig. 8 shows a comparison with experimental observations (Rosakis et al., 1999). The simulation results

in Fig. 8b show a strain (e22) shock angle about 44� which is consistent with the experimental measurement

(Fig. 8a). As depicted in Fig. 8c, the simulated crack propagation speed, calculated using (7), agrees with

experiments.
4.2. Stress wave motion and decohesion

Fig. 9 illustrates an overview of the wave propagation mechanism for the specimen of Fig. 2. The stress

distributions along the line AA0 in Fig. 9a are displayed in Fig. 9b at three times, in which the dilatation

wave propagation demonstrated in Fig. 7 is actually formed by a rectangular-like r11 impulse, plotted as the

dashed line in Fig. 9b. The r11 impulse front, is accompanied simultaneously with the r22 and r12 com-

ponents. Fig. 9b at time t¼ 2.0e)5 shows the convex-shaped r12 and r22 impulses. This r12 impulse actually

imposes a mode II load on the notch tip, which triggers the fracture process zone initiation and drives it to
comparison between numerical simulation and experiment (Rosakis et al., 1999). (a) Experiment; (b) simulation and

rison.



Fig. 9. (a) An illustration of the dilatation wave propagation and the corresponding stress state. (b) Stresses distribution along the line

AA0 in (a).
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move forwards along the weak path. The amplitude of r11 impulse remains nearly constant while both the

r22 and r12 decay earlier as new crack surfaces are formed. The trailing random stress impulses are the
result of crack face contact and wave reflections.

The numerical results demonstrate that the combination of computation and analysis may provide in-

sight for designing a dynamic fracture specimen. For the specimen shown in Fig. 1, to achieve a mode II-

like loading along the weak path requires the maximum shear stress and minimum normal compressive

stress r22, which causes contact, around the notch tip. Considering the dilatation wave front as the envelop

of the dilatation waves radiated from the point sources along the contact surface between specimen and

projectile, the maximum r12 is attained when the tangent of the envelop declines to the notch with the angle

of p=4. This preliminary analysis estimates that the optimal Wp in Fig. 2 should be the same as the length
of the pre-manufactured notch.
4.3. Definition of the ‘‘fracture process zone’’

A precise definition of the ‘‘fracture process zone’’ is crucial for interpreting the results of a numerical

simulation in terms of quantitative analyses. According to the constitutive law defined in (4) and (5–5b),
decohesion begins when the equivalent plastic strain reaches ½�e�bifurc that characterizes the onset of material



Fig. 10. Definition and measurement of cohesive zone (fracture process zone) in the numerical simulation. (a) Definition;

(b) a numerical example; (c) measurement of a moving fracture process zone during crack growth.
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bifurcation. This leads to an unambiguous definition (Fig. 10a): the fracture process zone starts where
�ep ¼ ½�e�bifur and ends where the stress drops to zero. The physical meaning of the end of a fracture process

zone is obvious: when a material suffers enough deformation and thus is fully damaged, it loses the capacity

to sustain stress; which results in cracking.

The computed equivalent stress and strain along the bonding layer are plotted in Fig. 10b, illustrating

the fracture process zone measurement in this study. The mode II crack opening displacement (COD) is

also plotted in this figure, where the COD is defined as the separation between upper and lower boundaries
of the bonding layer. A time sequence of the computed equivalent stresses and strains along the bonding

layer are displayed in Fig. 10c.
4.4. Contact mechanism and self-healing phenomenon

The numerical simulation demonstrates that contact between newly formed crack surfaces is inevitable

during intersonic crack propagation in the specimen shown in Fig. 2 due to the material stretching per-

pendicular to impact direction. The contact mechanisms for such a dynamic crack growth can be explained
through the four deformation regions that are illustrated in Fig. 11a–c. They are: (I) decohesion zone

(fracture process zone), (II) opening, even under shear dominant loading, (III) crack closure leading to

contact among the material elements within the bonding layer, (IV) contact between two matrices. Stage IV

occurs only when the material in the bonding layer is fully damaged thus losing its capacity to sustain any

load according to the constitutive law (4) and (5).

Fig. 12 presents snapshots of the contours of equivalent plastic strain, strain gradient, and shear strain

within the bonding layer from a computation with h ¼ 2l, where the vertical scale has been significantly

enlarged while the horizontal scale sustains. In this computation the upper half part of the specimen is hit
by a projectile. The equivalent plastic strain and strain gradient are plotted on the undeformed configu-

ration whereas the shear strain contours are plotted on the deformed configuration. The decohesion-

induced plastic strain (the contours with red color) represents the crack opening profile that is actually

composed of these fully damaged material elements, which are mainly concentrated in the upper half layer

with a width close to the material intrinsic length l. However, considerable plastic strain also exists in the

rest of the layer. Ultimately, all material elements in the bonding layer are fully damaged in the contact

zone IV.

The contact zone II introduced in Fig. 11 represents an opening dominated crack profile that forms
even under shear loading. This zone was detected using the results shown in Fig. 13 where the r12 and r22



Fig. 11. An illustration of the effects of contact on crack opening closure profile. (a) The structure before impact. (b) After impact: an

illustration of deformation induced contact. (c) Crack opening (sliding) profiles. (d) Stress and strain shocks corresponding to crack

opening (sliding) and contacts.
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are plotted along the bonding layer. Behind the convex peaks caused by impact induced impulse, both

stresses nearly vanish until the contact zone III, which is characterized by the fluctuating stress distri-

bution along the bonding layer. The stress shock presented in Fig. 7 is another result of the contact zone

II.

Plotted in Fig. 14 are the COD�
I (mode I COD) and COD�

II (mode II COD) along the crack growing path
at three time steps, normalized by h, the bonding layer thickness. These diagrams show that COD�

I is

negative, indicating that the crack faces are driven into contact. However, after a certain amount of crack

growth the COD�
I stays at the constant value about �h while the increase of COD�

II is also slows (Fig. 14c),

which hints that the contact between two matrices occurs and the relative sliding between them almost

diminishes after the bonding layer material is fully damaged. This phenomenon is quite similar to the self-

contact/healing process that has been frequently observed in seismic motion (Perrin et al., 1995; Ben-Zion,

2001).

Theoretically, COD is defined over an idealized crack that is a line without width. In the numerical
simulations, it is measured over the gauge length h, denoted by the superscript �, which is actually a



Fig. 12. Contours of plastic strain, strain gradient, and shear strain in the bonding layer.

Fig. 13. The shear and normal stresses on a propagating crack surface.
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measurement of the average deformation over the bonding layer material. This average overshadows the
tiny positive CODI along the new crack surfaces.

In Fig. 15, the mode II separation is plotted with respect to a moving coordinate system with its origin

fixed to the tip of the fracture process zone. Over the different time steps, an almost constant crack opening

profile is present, indicating a nearly steady-state propagation.



Fig. 14. A numerical example of mode I and II opening profiles during propagation, where h is the thickness of the bonding layer;

in (c) the I, II, III, IV refer to the contact zones illustrated in Fig. 11.

Fig. 15. The mode II crack opening profiles during propagation, plotted in a coordinate frame fixed to the moving crack tip.
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4.5. The effects of length scales: a parameter study

Dual functions have been assigned to the material intrinsic length l in the constitutive equations (4) and

(5): governing the strain gradient induced hardening before material bifurcation and scaling the energy
dissipation in post-bifurcation stage (see Figs. 3 and 4). Comparing Fig. 3 with Fig. 10 that illustrates the

definition of fracture process zone, one can find that the intrinsic length l actually scales the size of fracture

process zone and the decohesion energy.

The crack tip in the specimen in Fig. 2 is governed by the elastic–plastic field within the bonding layer

and the elastic field in the surrounding matrices. The material extrinsic length, the thickness h, determines

the ratio of the influences from these two fields on the crack tip. The slip-field analysis in Hao et al. (1997)

reveals that h also determines the amplitude of the stress triaxiality in the bonding layer.

These functions of l, h and their effects on intersonic growth are studied quantitatively in this subsection.
According to dislocation theory (Weertman and Weertman, 1980) the decohesion energy within the

fracture process zone can be calculated by:



Fig. 16

energy
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GR ¼ � 1

2

Z
DaC

DðX1Þr12ðX1ÞdX1 ð8Þ
where the coordinate X1 is originated at the crack tip and DaC represents the length of fracture process zone;

DðX1Þ is related to the mode II separation by:
DðX1Þ ¼ �2½u1�;1 ð9Þ
Eq. (8) can also be derived by calculating the J -integral along a contour surrounding the fracture process
zone along the lower and upper boundaries of the bonding layer.

Fig. 16 shows the evolution of decohesion energy GR computed using (8) with crack length a and time t,
respectively, with varying l. Two stages can be identified in both GRðaÞ and GRðtÞ curves: crack initiation-

acceleration stage and steady-state propagation. Initially, GR increases while the slopes dGR
da and ðdGR

dt Þ de-

crease with increasing a and t. Both GRðaÞ and GRðtÞ finally approach constant levels whereas the average

value of dGR
da or ðdGR

dt Þ approaches zero, implying a steady-state propagation. The amplitude of GR is nearly

linearly proportional to the material intrinsic length l in this stage.

Plotted in Fig. 17 are the fracture process zone sizes against time and crack length, respectively. They
demonstrate a similar trend as those shown in Fig. 16. These numerical results demonstrate that at steady-

state propagation stage, the fracture process zone size DaC attains a size that is linearly proportional to

material intrinsic length, i.e.
DaC ¼ l � F ðmaterial constants; hÞ ð10Þ
where F is a function of material constants and extrinsic length h. According to Fig. 3, l scales energy

dissipation at softening stage. For a linear softening, l actually is the inverse of w, the slope of the traction-
separation law; thus
DaC / F ðmaterial constants; hÞ
w

ð11Þ
(10) or (11) conforms the general conclusion that is obtained by the theoretical analysis of Uenishi and Rice
(2003).
. The effect of material intrinsic length on the decohesion energy. (a) Decohesion energy vs. crack tip position and (b) decohesion

vs. time.



Fig. 17. The effect of material intrinsic length on fracture process zone size. (a) Process zone size vs. crack tip position and (b) process

zone size vs. time.

Fig. 18. The effect of bonding layer thickness on decohesion energy. (a) Decohesion energy vs. crack tip position and (b) decohesion

energy vs. time.
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Presented in Figs. 18 and 19 are another set of simulations with fixed l but varying h, demonstrating that

smaller h also results in less energy dissipation and shorter fracture process zone. The slip-field analysis
from Hao et al. (1997) indicates that a smaller ratio of h to the specimen thickness produces higher stress

triaxiality and strain gradient within the bonding layer, which drives damage evolution and accelerates

failure of the bonding layer material. Consequently, it accelerates decohesion and debonding. On the other

hand, smaller h reduces the contribution of the elastic plastic stress–strain field in the bonding layer because

there is less space left for such a kind of deformation. All of these make the bonding layer more ‘‘brittle’’,

represented by less energy dissipation and shorter fracture process zone size.

4.6. Crack propagation speed

4.6.1. Intersonic and supersonic propagation

We define the propagation speed of the leading edge of fracture process zone as the crack speed. Fig. 20a

shows the variation in propagation speed with crack tip position from two computations with the same
length scales (l ¼ 0:02, h ¼ 0:02) but different strain rate hardening power m, as defined in (5). Similar to



Fig. 19. The effect of bonding layer thickness on cohesive size. (a) Cohesive size vs. crack tip position and (b) cohesive size vs. time.
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the results illustrated in Fig. 7, the propagation speed for both cases accelerates to the supersonic regime in
a very short time when the fracture process zone bursts out from the notch tip. Then it falls back into the

intersonic regime, followed by propagation at speeds fluctuating between cl and j0cs, where j0 is about
ffiffiffi
2

p

for the case m ¼ 0:01 and 1 for the case m ¼ 0:1. The spacing of each oscillation is about 1.5–2 mm of crack

growth. The average speeds, which can be determined as the average slope of the aðtÞ curve, lie in the region

between
ffiffiffi
2

p
cs and cl for both cases.

Fig. 20b and c show the corresponding stress shocks. For the case with a larger m (Fig. 20c), two stress

shocks appear in the lower half of the specimen. The first arc-shaped stress shock characterizes supersonic-

like propagation as it appears only when the propagation speed surpasses the dilatational wave speed. The
second shock appears when propagation is faster than shear stress wave. This observation supports the

results shown in Fig. 20a where the average propagation speed for this case is close to the dilatational wave

speed and the upper bound of the propagation speed surpasses cl.
It should be emphasized that all the numerical simulations in the present work show that the fracture

process zone, thus crack tip, is always behind the dilatational wave front, e.g. Fig. 7. However, a spon-

taneous failure along a thin bonding layer occurs after a dilatational wave front sweeps passed, which can
Fig. 20. Intersonic and supersonic crack propagations. (a) Speed vs. crack growth for two simulations with different strain rate

hardening power. (b) The stress shock for case with m ¼ 0:01. (c) The stress shock for case with m ¼ 0:1.
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causes the crack front to jump ahead in an instant at faster than cl. As crack propagation is a non-inertia

motion (Freund, 1990), the fracture process zone and crack tip can never surpass the dilatational wave

front if there is no previously imposed stress or strain on the weak path. Hence, a supersonic-like weak-path

propagation can not be sustained. It will fall back to intersonic regime immediately, as demonstrated in
Fig. 20a.

The results presented in Fig. 20 demonstrate that the strain rate hardening power m has strong effects on

intersonic crack propagation. A quantitative explanation is that higher strain rate sensitivity (higher m)
results in less ductility for the bonding layer material because its yield strength will be elevated and the

corresponding softening/damage evolution will be speeded up in the post-bifurcation stage. These results

agree qualitatively with the analysis of single dislocation motion in Rosakis (2001).
4.6.2. The effect of remote boundary condition

The simulations with various projectile velocities (Vp) have been performed with other parameters held

fixed. The relation between the average crack propagation speed and Vp is plotted in Fig. 21a, which

demonstrates a slight elevation of propagation speed when Vp varies from 25 to 70 m/s. Plotted in Fig. 21b

are the evolution of decohesion energy against time for the cases in Fig. 21a, from which one can distin-

guish that higher Vp results in earlier crack initiation.

The diffraction solution of an impact induced stress wave around a crack tip (Achenbach, 1973) indicates
that the amplitude of shear stress at the crack tip can be estimated by
Fig. 21

impact
r12 /
ffiffi
t

p
and rmax

12 ffi E � Vp
cl

ð12Þ
Hence, at a given instant t, a higher impact speed Vp causes higher stress. The sequence of crack propa-

gation demonstrated in Fig. 21b hints that an intersonic crack initiates when the impact induced shear stress

impulse reaches a certain threshold value at the crack tip. Taking the second equation of (12) as the driving

force and sY 0ð¼ rY 0ffiffi
3

p Þ, the shear yield strength of bonding layer, as the resistance, we define a parameter Rs,

the ratio of this driving force and resistance:
Rs ¼
rmax
12

sY 0
¼ E � Vpc�1

l

sY 0
ð13Þ
to characterize intersonic crack growth. When Rs is greater than Rcr
s , the threshold of Rs, intersonic

propagation will occur; otherwise, the imposed stress impulse is not strong enough to trigger ‘‘spontane-

ous’’ debonding along a weak path, and a crack will grow at subsonic speeds. In the cohesive element
analysis of Needleman (1999), the bonding strength is taken as a control parameter and a transition from
. The effects of strain rate hardening and impact velocity on propagation velocities. (a) The average propagation speed vs.

velocity. (b) The decohesion energy vs. time for the cases in (a). (c) Nominal crack speed vs. Rs defined in (13).
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subsonic to intersonic propagation has been observed when the bonding strength is decreasing. By com-

bining the numerical results in Needleman (1999) with the present work, Fig. 21c presents the relationship

between propagation speeds and Rs. This figure shows that the threshold Rcr
s is around one.
4.6.3. Comparison with theoretical analysis

A further question is how fast can a crack grow when Rs > Rcr
s ?

Based on the Weertman�s moving dislocation solution (Weertman, 1969; Weertman and Weertman,
1980) and Rice–Thomson�s dislocation emission model (Rice and Thomson, 1974), a generalized Bilby–

Conttrell–Swinden–Dugdale model (Bilby et al., 1963) has been proposed in Hao et al. (in press) (see Fig.

22). In this work, the solutions of steady-state weak-path intersonic crack growth with three classes of

cohesive laws have been obtained. In this model the remote boundary condition has been represented as

equivalent traction acting on the crack surface, which is expressed as the summation of a constant remote

imposed stress sremote and a non-constant term �sremote
d DðxÞ. The latter can be a remote, imposed stress rate or

non-uniform, distributed, remote stress. In this product, the DðxÞ is given by (9) and �sremote
d is proportional

to Rs:
Fig. 2

(b) dis

accum
�sremote
d ¼

0 for v6 cs
EQ Rs

Rcr
s
� 1

� �
for v > cs

(
ð14Þ
where Q is a function of the specimen geometry which can be calculated through an energy balance.

According the solutions in Hao et al. (in press) the relationships between propagation speed and �sremote
d

are plotted in Fig. 23a for different h=l. In this figure each curve includes two parts separated by the saddle

point defined by jvcs, where
ffiffiffi
2

p
< jv 6 cl=cs. In the interval cs < v < jvcs crack growth is unstable as the

propagation speed will be increasing while �sremote
d decreases. The interval jvcs 6 v < cl represents a stable

propagation regime, in which crack acceleration requires increasing �sremote
d . The coefficient jv is a function

of the material intrinsic and extrinsic lengths, strain rate hardening parameters, and remote boundary
condition represented by �sremote

d . A comparison between numerical computation and theoretical prediction

is given in Fig. 23b. The difference in the results is due to the slight difference in boundary condition

between two approaches.
2. Dislocation accumulation-induced intersonic crack growth model (Hao et al., in press); (a) lattices before crack growth;

location emission (Rice and Thomson, 1974); (c) smeared-out moving dislocation (Weertman�s solution, 1969); (d) dislocations
ulation-induced steady-state intersonic crack growth with fracture process zone.



Fig. 23. (a) Relationship between propagation speed V and �sremote
d , theoretical solution (Hao et al., in press); (b) comparison between

predictions and present numerical solutions.

Fig. 24. Intersonic crack propagation deceleration––contours of the strain perpendicular to the crack pathwhere the white arrow

indicates the crack tip position in each figure. (a) t¼ 1.4e)5 (s), (b) t¼ 1.6e)5 (s), (c) t¼ 1.7e)5 (s) and (d) t¼ 1.95e)5 (s).
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4.7. Sudden deceleration of intersonic crack growth

Two issues are discussed in this subsection: the condition that causes sudden deceleration and the

corresponding wave propagation mechanism.
Fig. 24 is a set of the snapshots of strain shocks during a deceleration process, where the white arrow

indicates the position of the crack tip in each figure. It demonstrates that before deceleration the crack

grows with an intersonic speed, accompanied by a strain shock radiated from the crack tip ( Fig. 24a).

According to the angle between the strain shock and fracture path, the average propagation speed is about

1:46cs. This crack tip shock radiation ceases in Fig. 24b while the existing strain shocks continuously spread

out and march forwards passing the moving crack tip (Fig. 24c and d), which implies that the crack

propagation has already decelerated to sub-Rayleigh regime.

Fig. 9b indicates that after the projectile impacts the specimen edge, a r11 impulse travels with the
dilatational wave speed transversely through the specimen. The shear stress component caused by this

dilatational stress impulse triggers the mode II crack initiation and drives it at intersonic speeds when Rs

(13) is greater than its threshold Rcr
s . Since the average crack propagation speed is always slower than

dilatational speed, after the dilatational stress impulse passes the crack tip, Rs drops below Rcr
s immediately,

so the crack loses its driving force and its propagation speed decreases.



Fig. 25. Wave mechanisms before and after a crack decelerates from intersonic to subsonic speeds where ti denotes the time, Di and

Si are the dilatational wave and shear wave radiated from the crack tip at ti, respectively, and Ei is the envelop of all shear wave fronts

at ti.
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Fig. 24 also demonstrates that after crack deceleration, the strain shocks radiated out before deceleration

continue to move forward with a constant angle. Several strain shocks appear and one follows another,

reflecting the fluctuating propagation speed shown in Fig. 20a. In Fig. 24 the white dash lines indicate the

extension of the strain shock fronts. The intersections between these white dash lines and the weak path

indicate the position of crack tip if there were no deceleration. It should also be noticed that the strain
shocks, which were straight lines before the crack decelerates, become curved bending toward the crack tip.

If we consider a moving crack tip as a source which radiates both dilatation and shear waves, the shocks

demonstrated in Fig. 24 are actually the envelopes of the shear waves radiated from the crack tip at each

instance. When the crack propagation speed decelerates from intersonic regime to subsonic regime, this

envelop will degenerate to a curve, as depicted in Fig. 25. It implies that the intersonic steady-state crack tip

stress–strain field radiates out from the position where deceleration occurs with a shear wave speed. This

phenomenon is similar to the theoretical prediction in Freund�s subsonic non-uniform crack motion

solution (Freund, 1972) where the equilibrium solution immediately radiates out from the crack tip at a
speed less than dilatation wave speed when a sub-Rayleigh crack propagation is suddenly stopped.
5. Conclusions

Intersonic crack growth has been investigated based on the dynamic fracture test conducted by Rosakis

and his co-authors (Rosakis et al., 1999). A three-phase interfacial fracture model is proposed for numerical

simulations, in which an additional material phase is introduced to reproduce the mechanical behavior of
the interface. Numerical simulations have been performed with varying load, material intrinsic and

extrinsic length, strain rate hardening exponents. The results and conclusions are summarized as follows:

1. The numerical simulations demonstrate that the crack propagation speed exhibits oscillations ranging

from intersonic to supersonic speeds. The upper bound of this oscillation is around the dilatational wave

speed whereas the lower bound is around the shear wave speed to
ffiffiffi
2

p
times shear wave speed, depending
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on the material intrinsic length, bonding layer thickness, strain rate sensitivity, and loading conditions.

The steady-state propagation speed is the average of these upper and lower limits which lies between csjv

and dilatation wave speed, where
ffiffiffi
2

p
6 jv < cl=cs. Both the numerical solution and the theoretical solu-

tion, derived from the generalized Bilby–Cottrell–Swinden–Dugdale model (Hao et al., in press), indicate
that the coefficient jv is a function of the material intrinsic and extrinsic lengths, strain rate hardening

parameters, and remote boundary conditions.

2. The parameter Rs, defined as the ratio between remote impact velocity and material shear strength:
Rs
 ¼
E � Vp
sY 0cl
is proposed to characterize crack propagation speed. An estimated threshold of Rs defining the boundary

between subsonic and intersonic propagation is about unity. When Rs is smaller than its threshold,

a crack grows with sub-Rayleigh speed; otherwise, it grows with an intersonic speed.

3. Stress shocks, characterized by both the intersonic and supersonic speeds, have been captured in the

numerical simulations for the case where the average crack propagation speed is close to cl.
4. Two types of contact exist, contact within fracture process zone and contact between the crack wedges

behind moving crack tip. In the present simulation the former is taken into account by the constitutive

modeling of the interface material phase; the latter is simulated by additional numerical contact algo-
rithm. The contact behind crack tip can cause additional strain shocks. A ‘‘self-healing’’ mechanism,

crack surfaces sticking together, has been captured in the simulation. Both material intrinsic and extrin-

sic lengths have strong effects on the contact behavior.

5. The dual functions of material intrinsic length are presented in the simulations: governing the strain gra-

dient induced hardening before material bifurcation and scaling the dissipated energy after bifurcation.

A nearly linear relationship between fracture process zone size and material intrinsic length has been

found during steady-state propagation.

6. The material extrinsic length, defined as the bonding layer thickness, determines the ratio of the effects
from the elastic–plastic crack tip field inside a bonding layer and the elastic field in the surround matri-

ces. It has a strong effect on the contact/self-healing behind moving crack tip.

7. Crack deceleration from intersonic to subsonic speeds has been also captured in the numerical simula-

tions. Crack deceleration occurs after an impact induced dilatational stress impulse passes the crack tip

which moves at intersonic speeds. The intersonic stress–strain field, which is characterized by shear stress

shock radiation, continuously spreads out at the shear wave speed from the site where deceleration

occurs. This observation is similar to the Freund�s subsonic non-uniform crack motion solution sub-

jected to general load (Freund, 1972).
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